
gbasis([x^2-y^3,x+y^2],[x,y]) returns [y^4- y^3,x+y^2]
Groebner Remainder
Given a polynomial and both a vector of polynomials and a vector of variables, returns the remainder of the
division of the polynomial by the Groebner basis of the vector of polynomials.
greduce(Poly1, [Poly2 Poly3 …], [Var1 Var2…])
Example:
greduce(x*y-1,[x^2-y^2,2*x*y-y^2,y^3],[x,y]) returns 1/2*y^2-1
Hermite
Returns the Hermite polynomial of degree n, where n is an integer less than 1556.
hermite(Integer)
Example:
hermite(3) gives 8*x^3-12*x
Lagrange
Given a vector of abscissas and a vector of ordinates, returns the Lagrange polynomial for the points specied
in the two vectors. This function can also take a matrix as argument, with the rst row containing the
abscissas and the second row containing the ordinates.
lagrange([X1 X2…], [Y1 Y2…]))
or
lagrange
Example:
lagrange([1,3],[0,1]) gives (x-1)/2
Laguerre
Given an integer n, returns the Laguerre polynomial of degree n.
laguerre(Integer)
Example:
laguerre(4) returns 1/24*a^4+(-1/6)*a^3*x+5/ 12*a^3+1/4*a^2*x^2+(-3/2)*a^2*x+35/24*a^2+(-
1/6)*a*x^3+7/4*a*x^2+(-13/3)*a*x+25/12*a+1/ 24*x^4+(-2/3)*x^3+3*x^2-4*x+1
Legendre
Given an integer n, returns the Legendre polynomial of degree n.
legendre(Integer)
Example:
legendre(4) returns 35/8 ⋅ x
4
+ 15/4 x
2
+ 3/8
384 Chapter 22 Functions and commands
Comentarios a estos manuales