HP 48gII Graphing Calculator Manual de usuario Pagina 522

  • Descarga
  • Añadir a mis manuales
  • Imprimir
  • Pagina
    / 864
  • Tabla de contenidos
  • MARCADORES
  • Valorado. / 5. Basado en revisión del cliente
Vista de pagina 521
Page 16-44
integration of the form
=
b
a
dttftssF .)(),()( κ
The function κ(s,t) is
known as the kernel of the transformation
.
The use of an integral transform allows us to resolve a function into a given
spectrum of components
. To understand the concept of a spectrum, consider
the Fourier series
()
,sincos)(
1
0
=
++=
n
nnnn
xbxaatf ωω
representing a periodic function with a period T. This Fourier series can be
re-written as
=
++=
1
0
),cos()(
n
nnn
xAaxf φϖ where
,tan,
122
=+=
n
n
nnnn
a
b
baA φ
for n =1,2, …
The amplitudes A
n
will be referred to as the spectrum of the function and will
be a measure of the magnitude of the component of f(x) with frequency f
n
=
n/T. The basic or fundamental frequency in the Fourier series is f
0
= 1/T, thus,
all other frequencies are multiples of this basic frequency, i.e., f
n
= nf
0
. Also,
we can define an angular frequency, ω
n
= 2nπ/T = 2π⋅f
n
= 2π⋅ nf
0
= n⋅ω
0
,
where ω
0
is the basic or fundamental angular frequency of the Fourier series.
Using the angular frequency notation, the Fourier series expansion is written
as
=
++=
1
0
).cos()(
n
nnn
xAaxf φω
()
=
++=
1
0
sincos
n
nnnn
xbxaa ωω
Vista de pagina 521
1 2 ... 517 518 519 520 521 522 523 524 525 526 527 ... 863 864

Comentarios a estos manuales

Sin comentarios